Mitral Valve analysis

Review article: TEE of Mitral Valve. International Journal of Perioperative Ultrasound and Applied Technologies, September-December 2013;2(3):122-130.

New Concepts for Mitral Valve Imaging.  . 2013 Nov; 2(6): 787–795.

A Quantification Approach to Echocardiography of Mitral Valve for Repair. Anesthesia & Analgesia 12(1):34-58 · July 2015

4D-transesophageal echocardiography and emerging imaging modalities for guiding mitral valve repair.  Ann Cardiothorac Surg 2015;4(5):461-462.

Method—Comparison of Transthoracic and Transesophageal Echocardiography. Clin. Cardiol. 25, 517–524 (2002)

Virtual TEE: spectral Mitral valve

Echocardiographic atlas of the mitral regurgitation. J Saudi Heart Assoc. 2011 Jul; 23(3): 163–170.

Intraoperative transesophageal echocardiographic assessment of the mitral valve repair. Ann Card Anaesth 2010;13:79-85.

 
 
 

Computer-based comparison of different methods for selecting mitral annuloplasty ring size. Journal of Cardiothoracic Surgeryvolume 12, Article number: 8 (2017)

Prediction of the annuloplasty ring size in patients undergoing mitral valve repair using real-time three-dimensional transoesophageal echocardiography. . 2011 Jun; 12(6): 445–453.

 
 

The choice of mitral annuloplastic ring—beyond “surgeon’s preference”.  Ann Cardiothorac Surg 2015;4(3):261-265

Gold Standard to Measure MR – PPT 2016 U of Wash.

Spinal drain for TEVAR

I had a patient come in for a 2 stage endovascular aortic repair. The patient had a 1st stage left carotid to subclavian bypass done about 3 days ago. We did a 2nd stage TEVAR for a descending aortic aneurysm. The patient did really well. Stayed in constant communication with the vascular surgeon as well as endovascular surgeon. A plan was in place. Patient was maximally beta blocked. I found dexmetetomidine to be a great drug for sedation pre-induction as well as blunting any responses to laryngoscopy during induction. Cordis for volume. Used the side port of the cordis for drips (nicardipine, phenylephrine). There were various times during the surgery where the surgeon wanted hypotension vs. hypertension. During deployment of the stent, SBP < 90. Once the stent was deployed, goal SBP 140 (MAP>90). Overall great case and great outcome for the patient.

What is a TEVAR (Thoracic EndoVascular Aortic Repair)?

Why place a spinal drain?

Management of spinal drain:

Potential complications


Key Points:

  • Pre-op planning: chat with the surgeon before hand regarding a plan. Make sure the OR team understands the plan.
  • Communication: before, during, after the case.
  • Be vigilant about tight BP control

Methylene Blue

Case: 65 yo male with septic endocarditis and septic emboli with + valve vegetations.  Severe MR, mod AI, mod TR, no PFO, EF 60-70%. Mild pericardial effusion. Large bilateral pleural effusions.

 

Vasoplegic syndrome—the role of methylene blue. European Journal of Cardio-Thoracic Surgery, Volume 28, Issue 5, 1 November 2005, Pages 705–710.

OpenAnesthesia: Methylene Blue

Dose:
2 mg/kg bolus –> 0.5 mg/kg/hr x 12 hours
Worked wonderfully for vasoplegia unresponsive to levophed or vasopressin.

ERAS for Cardiac Surgery

I have been utilizing ERAS in general surgery, OB, and ortho cases.  Diving into one of my more tricky populations, I opted to see what ERAS practices are out there for cardiac surgery.  Careful what you look for my friends.  There’s actually a good amount of information out there!

ACCRAC podcast: ERAS for Cardiac Surgery

ERAS Cardiac Consensus Abstract – April 2018

Enhanced recovery after surgery pathway for patients undergoing cardiac surgery: a randomized clinical trial. European Journal of Cardio-Thoracic Surgery, Volume 54, Issue 3, 1 September 2018, Pages 491–497, https://doi.org/10.1093/ejcts/ezy100

** Audio PPT ** American Association for Thoracic Surgery: Enhanced Recovery After Cardiac Surgery. April 2018

The impact of enhanced recovery after surgery (ERAS) protocol compliance on morbidity from resection for primary lung cancer.  The Journal of Thoracic and Cardiovascular Surgery. April 2018Volume 155, Issue 4, Pages 1843–1852. 

Enhanced Recovery for Cardiac Surgery. J Cardiothorac Vasc Anesth. 2018 Jan 31. pii: S1053-0770(18)30049-1. DOI: https://doi.org/10.1053/j.jvca.2018.01.045

ERAS
From Journal of Anesthesiology

Enhanced Recovery After Cardiac Surgery Society

My blog posts:

Key Points

  • Level 1 (Class of recommendation=Strong Benefit):
    • Tranexamic acid or epsilon aminocaproic acid should be administered for on-pump cardiac surgical procedures to reduce blood loss.
    • Perioperative glycemic control is recommended (BS 70-180; [110-150]).
    • A care bundle of best practices should be performed to reduce surgical site infection.
    • Goal-directed therapy should be performed to reduce postoperative complications.
    • A multimodal, opioid-sparing, pain management plan is recommended postoperatively
    • Persistent hypothermia (T<35o C) after CPB should be avoided in the early postoperative period. Additionally, hyperthermia (T>38oC) should be avoided in the early postoperative period.
    • Active maintenance of chest tube patency is effective at preventing retained blood syndrome.
    • Post-operative systematic delirium screening is recommended at least once per nursing shift.
    • An ICU liberation bundle should be implemented including delirium screening, appropriate sedation and early mobilization.
    • Screening and treatment for excessive alcohol and cigarette smoking should be performed preoperatively when feasible.
  • Level IIa (Class of recommendation=Moderate Benefit)
    • Biomarkers can be beneficial in identifying patients at risk for acute kidney injury.
    • Rigid sternal fixation can be useful to reduce mediastinal wound complications.
    • Prehabilitation is beneficial for patients undergoing elective cardiac surgery with multiple comorbidities or significant deconditioning.
    • Insulin infusion is reasonable to be performed to treat hyperglycemia in all patients in the perioperative period.
    • Early extubation strategies after surgery are reasonable to be employed.
    • Patient engagement through online or application-based systems to promote education, compliance, and patient reported outcomes can be useful.
    • Chemical thromboprophylaxis can be beneficial following cardiac surgery.
    • Preoperative assessment of hemoglobin A1c and albumin is reasonable to be performed.
    • Correction of nutritional deficiency, when feasible, can be beneficial.
  • Level IIb (Class of recommendation=Weak Benefit)
    • A clear liquid diet may be considered to be continued up until 4 hours before general anesthesia.
    • Carbohydrate loading may be considered before surgery.

 

ERAS for cardiac surgery. Journal of Cardiothoracic and Vascular Anesthesia

Erector Spinae Plane Block

After speaking to a colleague of mine regarding regional anesthesia for thoracotomy and mastectomy, I am reading up on Erector Spinae Plane (ESP) block.

Indications:

Other regional blocks

Continuous ESP block catheter (my current regimen and what I’m able to get at my institution):

  • Braun Periflex catheter through 17g epidural needle
  • Cranial-to-caudal approach @ T5 (mastectomy, vats, rib fractures)
  • 20ml 0.25% bupi + epi prior to catheter
  • Catheter 5cm in space
  • 5 ml 0.25% bupi + epi after catheter placed
  • Mix: 0.125% bupi + fentanyl @ 10 ml/hr
  • If PCEA available, bolus 15ml every 3 hours; continuous as mix above.

Cardiac anesthesiologists and LVAD patients: Pro vs Cons

There’s been a big debate re: who should care for LVAD patients… a general anesthesiologist or a cardiac anesthesiologist?  See below for pros and cons of each.  Ultimately, I think all anesthesiologists should be comfortable caring for these patients as we’ll see more and more LVAD patients undergoing procedures.

Troubleshooting the Left Ventricular Assist Device.  Emergency Medicine. 2016 February;48(2):58-63.

RTEmagicC_em048020061_t1.jpg
From Emergency Medicine, Feb 2016.

LVAD Parameter Abnormalities:
  • High power, low-pulsatility index and fluctuating pump speed: Consider pump thrombosis or hypotension, vasodilation, initial response to exercise.
  • High power with high pulsatility index: Consider fluid overload, normal physiological response to increased demand; myocardial recovery.
  • Low power, low pulsatility index, and unchanging speed: Consider hypertension or inflow/outflow obstruction, LV failure, dysrhythmia.
  • Low power with normal or high pulsatility index: Consider suction event.

Pro: Cardiothoracic Anesthesiologists Should Provide Anesthetic Care for Patients With Ventricular Assist Devices Undergoing Noncardiac Surgery. JCVA, February 2017. Volume 31, Issue 1, Pages 378–381

Con: Cardiothoracic Anesthesiologists Are Not Necessary for the Management of Patients With Ventricular Assist Devices Undergoing Noncardiac Surgery. JCVA, February 2017. Volume 31, Issue 1, Pages 382–387.


VAD-2
From LifeInTheFastLane.com

Ventricular assist devices and non-cardiac surgery.  BMC Anesthesiology201515:185

  • Goals of care for LVAD patients undergoing non-cardiac surgery should be directed at maintaining forward flow and adequate perfusion. Three main factors that affect LVAD flow are preload, RV function, and afterload.
  • The right ventricle is the primary means of LVAD filling; therefore, maintaining RV function is imperative.
  • Marked increases in systemic vascular resistance should be avoided.
  • Generally, decreases in pump flow should first be treated with a fluid challenge. Hypovolemia should be avoided and intraoperative losses should be replaced aggressively. Second line treatment should include inotropic support for the right ventricle.
  • Low-dose vasopressin (<2.4 U/h) may be the vasopressor of choice due to its minimal effect on pulmonary vascular resistance.
  • Standard Advanced Cardiovascular Life Support Guidelines should be followed; however, external chest compressions should be avoided during cardiac arrest.
  • Steep Trendelenburg may increase venous return, risking RV strain. Peritoneal insufflation for laparoscopic surgery also increases afterload and has detrimental effects on preload.  Insufflation should utilize minimum pressures and be increased in a gradual, step-wise fashion.
  • TEE can be extremely valuable in diagnosing the cause of obstruction.

Perioperative management of patients with left ventricular assist devices undergoing noncardiac surgery. Annals of cardiac anaesthesia 2016. Vol 19, Issue 4: 676-686.

LVAD: What Should I report? Feb 2017 ASE conference. **ECHO**

  • Higher the RPMs (pump speed)
    • More LV compression, smaller LV size
    • Less functional MR
    • More AI, less AV opening
    • Less LVED diameter
  • De Novo Aortic Regurgitation Post LVAD
    • Proposed mechanisms
      • Aortic valve remains closed during systole
      • Commissural fusion of the aortic valve from disuse
      • Subsequent degeneration of valve
      • Turbulent blood backflow from small outflow cannula onto a closed valve
      • Persistent elevation of aortic root pressure –> aortic root dilation and valve incompetence
    • Treatment
      • Lower LVAD speed (but that may worsen mitral regurgitation)
      • Aortic valve surgery or percutaneous intervention
      • Heart transplant
  • RV Fractional Area Change (RV FAC)
    • RVFAC is a rough measure of RV systolic function (4 chamber view)
    • RVFAC = (RVEDA – RVESA) / RVEDA
    • Normal RVFAC = 35 – 63%

Ventricular Assist Device (VAD). LifeInTheFastLane.com. .

Care of the LVAD patient PPT. Summit 2014.

  • Pulsatility Index:
    • —normally decrease as pump speed is increased

LVAD: Understanding equipment and Alarms. Duke Heart Center PPT.

LVAD Management in the ICU. Crit Care Med 2014; 42:158–168. 

Screen Shot 2018-11-26 at 11.20.26 AM
From Left Ventricular Assist Device Management in the ICU Pratt, Alexandra K. MD1; Shah, Nimesh S. MD1; Boyce, Steven W. MD2 Critical Care Medicine: January 2014 – Volume 42 – Issue 1 – p 158–168 doi: 10.1097/01.ccm.0000435675.91305.76 Concise Definitive Review

Screen Shot 2018-11-26 at 11.20.47 AM
Left Ventricular Assist Device Management in the ICU Pratt, Alexandra K. MD1; Shah, Nimesh S. MD1; Boyce, Steven W. MD2 Critical Care Medicine: January 2014 – Volume 42 – Issue 1 – p 158–168 doi: 10.1097/01.ccm.0000435675.91305.76 Concise Definitive Review

 

Anesthesia for Left Ventricular Assist Device Insertion: A Case Series and Review. Ochsner J. 2011 Spring; 11(1): 70–77.

Medical Management of Patients With Continuous-Flow Left Ventricular Assist Devices. Curr Treat Options Cardiovasc Med. 2014 Feb; 16(2): 283.

 


My blog posts:

HeartWare vs. HeartMate LVAD

Ventricular Assist Devices: Impella

Antithrombin III

The other day we had a patient come in for a CABG. Aside for some coronary artery disease, hypertension, and chronic kidney disease, the patient was pretty healthy. They were not on anticoagulation prior to the procedure.

After I gave full dose heparin for going on bypass (41,000U in this case), the ACT only came up to 422. An additional 10,000U of heparin was given with a repeat ACT of 457. Still, our surgeon was not quite comfortable with that number and requested an additional 10,000U heparin. The ACT came to 477.

If the ACT stayed in the low 400s, would you go on bypass? What if the ACT had not responded to the repeated heparin dosings?

Management of coagulation during cardiopulmonary bypass. Continuing Education in Anaesthesia Critical Care & Pain, Volume 7, Issue 6, 1 December 2007, Pages 195–198, https://doi.org/10.1093/bjaceaccp/mkm036.

Antithrombin III concentrate to treat heparin resistance in patients undergoing cardiac surgery. J Thorac Cardiovasc Surg. 2002 Feb;123(2):213-7.

Would you give antithrombin III or plasma?

Treating Heparin Resistance With Antithrombin or Fresh Frozen Plasma. The Annals of Thoracic Surgery. June 2008Volume 85, Issue 6, Pages 2153–2160.

Is there evidence that fresh frozen plasma is superior to antithrombin administration to treat heparin resistance in cardiac surgery? Interact Cardiovasc Thorac Surg. 2014 Jan; 18(1): 117–120.

We ultimately decided to go on bypass. Repeat ACTs on bypass were in the 500s. No antithrombin was given. After separation from cardiopulmonary bypass and administration of protamine, repeat ACT was 111. Protamine was dosed accordingly to heparin administration and ACTs while on bypass.

Recommendations for the use of antithrombin concentrates and prothrombin complex concentrates. Blood Transfus. 2009 Oct; 7(4): 325–334.

Thrombate (antithrombin III) package insert

Suprascapular Blocks

Trends are evolving in decreasing intraoperative and postoperative opioid use.  Therefore, anesthesiologists are constantly learning new regional techniques to help with postoperative pain.  For shoulder surgeries, I’ve moved away from interscalene blocks toward supraclavicular blocks.  I think the interscalene block provides a better block of a total shoulder surgery, however, certain patient comorbidities often make the supraclavicular block a better choice.

Nice paper from Anesthesiology, Dec 2017: Suprascapular and Interscalene Nerve Block for Shoulder Surgery: A Systematic Review and Meta-analysis. Anesthesiology 12 2017, Vol.127, 998-1013.

Nowadays, it seems that suprascapular blocks are gaining in popularity (I’d probably use it to supplement the supraclavicular block.

Supplies and Technique (from USRA):

Suprascapular Nerve

ssn1

How to position the ultrasound probe:

ssn5
From USRA

05_1_a_shoulder-suprascapular-artery-and-nerve_dsc_5085_copy

Ultrasound Image

ssn4
From USRA.  SSM = supraspinatus muscle
SSA = suprascapular artery
SSN = suprascapular nerve
TZM = trapezius muscle
STSL = superior transverse scapular ligament

05_1_c_shoulder-suprascapular-artery-and-nerve_labels

Useful Links


Update: June 19, 2018

Comparison of Anterior Suprascapular, Supraclavicular, and Interscalene Nerve Block Approaches for Major Outpatient Arthroscopic Shoulder Surgery: A Randomized, Double-blind, Noninferiority Trial. Anesthesiology 7 2018, Vol.129, 47-57.

PEEP Alone Atelectasis
From Anesthesiology, July 2018

  • Conclusions: The anterior suprascapular block, but not the supraclavicular, provides noninferior analgesia compared to the interscalene approach for major arthroscopic shoulder surgery. Pulmonary function is best preserved with the anterior suprascapular nerve block.

HeartWare vs. HeartMate LVAD

A couple of weeks ago, I took care of a patient who desperately needed to get better from acute CHF.  At that time, we placed the patient on an impella… but the next day, it was deemed that he needed ECMO to reperfuse his organs.  After a week on ECMO with continued impella support, ECMO was titrated down and off while maintaining 3.9L/min flow from the impella.  During the wean off ECMO, the patient had been extubated and was mentating clearly and interacting appropriately.

Fast forward a couple days after getting extubated, the patient was ripe for an LVAD.  But which one? (We ended up placing the patient on HeartWare LVAD).

YouTube: LVAD 101 – Anatomy & Physiology

YouTube: LVAD Pathophysiology


HeartWare

heartware-hvad-7x4

HeartWare brochure

YouTube vid of HeartWare (no sound) ; Vid of HeartWare with detailed explanation

gr2_lrg


HeartMate II

heartmate-index_1

HeartMate II website

YouTube vid of HeartMate II


Summary

  • Cost-effectiveness: HeartWare > HeartMate II (UK NHS study, April 2014)
  • LV Geometry: HeartWare = HeartMate II (J CT Surg, 2013)
  • Stroke & GI bleed risk: HeartWare > HeartMate II (J Card Surg 2013)
  • Risk of device failure: HeartWare < HeartMate II
  • ENDURANCE trial: Randomized patients eligible for DT 2:1 to the HeartWare centrifugal flow LVAD versus the HeartMate II axial flow LVAD. The trial did reach its primary noninferiority endpoint of stroke free survival at 2 years (55.0% in the HeartWare patients versus 57.4% in the HeartMate II patients). Of note, a change in the design of the HeartWare device during the trial (sintering of the inflow cannula) appeared to decrease the incidence of pump thrombosis. Overall, the stroke rate was higher in the HeartWare arm whereas device malfunctions requiring exchange or urgent transplantation were more common in the HeartMate II arm. Data analysis suggested that better blood pressure control in the HeartWare arm may decrease the stroke rate and a second cohort of patients is being enrolled with more attention being paid to blood pressures management.

38ff1

Ventricular Assist Devices: Impella

“There’s an emergent case coming for impella placement.”

Impella?  I’ve read about these devices and I’m familiar with managing patients on LVADs as well as providing anesthesia for LVAD placement.  But, I’ve never done an Impella on a critically unstable patient.

YouTube video describing the purpose and placement of the Impella

Cath Lab Digest: Overview of Impella 5.0

home-graphic-role

Anesthesia & Analgesia; January 2012. Echo rounds: The Use of TEE for Confirmation of Appropriate Impella 5.0 Device Placement.

From A&A Echo Rounds

 YouTube video similar to our axillary artery conduit (we had to go left sided bc of a prior AICD in the patient’s right chest) for Impella 5.0

JCVA, June 2010. Review Articles: Percutaneous LVAD: Clinical Uses, Future Applications, and Anesthetic Considerations.